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ABSTRACT 

Automated clinical image data collection tools and apparatus 

are becoming increasingly important to the medical industry, 

and imaging databases are growing at an unprecedented rate. 

Consequently, grid-based telemedicine efforts require the 

autonomous classification of patient images from distributed 

sources for fast and accurate image storage, management, and 

retrieval. In this paper, we present a unique algorithm that 

performs feature discovery to find class-wise isomorphic 

Association Rules (ARs) among features. By discovering ARs, 

we are able to find unique and useful knowledge in images. To 

find knowledge, we first uniformly segment every image in a 

series and extract color and texture features for every segment., 

Next, we discover ARs for the color and texture features for 

image segments. We then exploit redundancy in the 

differentials of rule sets for the autonomous classification of 

patient image data with significant sensitivity and specificity. 

We demonstrate the efficacy of our approach with experimental 

results on a data set of diabetic retinopathy patients. 

 

   Index Terms— Classification, association, image databases, 

clinical decision support 

 

1. INTRODUCTION 

 

As digital instrumentation and computing resources continue to 

transform patient care, and, as data storage costs continue to 

fall, an abundance of larger, more complex patient databases 

are becoming available. Consequently, rapid deployment of 

isolated databases, often referring to the same patient, but 

stored in non-standardized data silos, i.e. disconnected 

desktops, enterprise servers, and departmental level storage 

systems, has recently become an issue of concern. The rise in 

telemedicine, translational medicine studies, and computational 

clinical decision support further escalate the need for (semi-) 

autonomous data integration and interoperability. Furthermore, 

the computerized medical record is on the verge of becoming 

practical in direct health-care applications, and will soon be a 

business necessity for health-care providers, further swelling 

data growth. This growth will lead to the renewal of demands 

for the development of novel technologies designed to organize 

and mine data and enhance biomedical and, consequently, 

computing research.    

In this paper, we present a unique algorithm for the 

autonomous classification of ophthalmologic images using a 

data mining approach consisting of the four distinct 

components shown in Figure 1.  

 
Fig. 1. The outline of the proposed classification schema. 

       A clinical image is autonomously classified when we 

assign signatures to it based on the ARs we discover for the 

color and texture features within the image and based on the 

comparisons we make between those features and the database 

of class-specific rule signatures. The sensitivity and specificity 

of this approach depends on how precisely the knowledge in 

the image is represented by the discovered signatures. Initially, 

the image is segmented using an equi-window based approach. 

For every segment, color and texture features are extracted, and 

ARs are discovered among the extracted features.  These ARs 

are then organized for classification purposes.   

 

2.  SIGNIFICANCE AND BACKGROUND 

 

Image classification can be applied in image annotation, 

disease and patient classification, content-based image 

retrieval, and information retrieval in large image databases. 

Mining novel feature content from images is a non-trivial task 

that involves the abstraction of various image details, desirably 

at several different levels of resolution, to obtain a unique 

image signature for data mining purposes. Several techniques 

for clinical and biomedical image classification have been 

proposed recently. These approaches could sort out images of 

respective disease types from a concentrated set of disease 

conditions. However, the approaches cannot be directly applied 

to autonomous patient classification because, for instance, 

patients could suffer from more than one condition or images 

could be captured at different stages of the same condition. Our 

work focuses on a current challenge to data mining in patient 

classification: novel techniques that can discover patient-

sensitive patterns and exploit them for classification purposes 

with limited or no user supervision. 

       Medical image classification has received considerable 

attention in recent years. Ford et. al. [1] classified patients in 

three datasets, those with Alzheimer’s disease, those with 

schizophrenia, and those with mild traumatic brain injury, 

against corresponding controls using fMRI activation maps, 

specifically, the statistical parametric mapping approach 

(contrast and t-maps).  Hoi et. al. [2] successfully used “batch-
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mode active learning” to classify multiple, non-overlapping 

images in five datasets (four UCI datasets and one medical 

image dataset).  However, they did not use this approach to 

classify patients. Antonie et. al. [3] achieved a 70% accuracy 

rate in identifying abnormal breast cells by using AR mining in 

digital mammograms and were further able to break down 

abnormal cell images into fatty, glandular, and dense tissue 

masses to classify candidates for biopsy.  Liow et. al. [4] 

achieved 69% and better results in the classification of HIV 

positive patients from healthy volunteers by comparing voxels 

and volume of interest based analyses in FDG PET brain 

scans.    

       On the other hand, AR discovery is a powerful data mining 

technique [5], but work in the application of ARs for medical 

image classification has been limited. Antonie et. al. [3] use 

ARs to classify MRI images of breast cancer. In their method, 

the image is divided into 16-equal parts, and four statistical 

features of pixel intensities: mean, variance, skewness, and 

kurtosis are extracted from each part. ARs are discovered using 

class labels as rules and are then employed for classification.  

In [6], the authors develop a new associative classification 

algorithm called Classification based on Atomic ARs (CAAR). 

CAAR only generates atomic rules under high, self-adaptive 

confidence thresholds and dynamic support thresholds. In 

CAAR, the image is segmented into n x n regions, and 19 

features are extracted from these segments. The ARs used in 

this approach are limited to those that have a class-label as a 

consequent, and multiple passes are needed to classify the 

images in the testing stage. The proposed approach does not 

follow any such constraint. 

 

3. METHODOLOGY 

 

The proposed methodology consists of the four parts presented 

in Figure 1 on page 1: (1) Segmentation and Feature Extraction, 

(2) Data Preprocessing and Rule Generation, (3) Classifier 

Building, and (4) Multi-class classification. The first step, 

Segmentation and Feature Extraction, is performed as follows. 

The image data set is divided into test (40%) and training 

classes.(60%). We perform 5-fold cross validation in the testing 

phase to reduce any selection bias. 

 

3.1. Image Segmentation and Feature Extraction 

The image is segmented into overlapping square segments of 

size n x n windows. The user can supply n based on the degree 

of resolution expected in discovering coherent relationships 

between images of the same class. For each window in the 

image, RGB color components are converted to LUV feature 

set, which are then used as the three-color features (C1, C2, C3). 

Gray level co-occurrence matrices are used to extract the 

texture of each segment in the image. The gray-level co-

occurrence matrix is a two dimensional matrix of joint 

probabilities, Pd,r(i,j) i 0..n, j 0..n , between pairs of pixels 

separated by distance d in a given direction. The following 

statistical properties of these co-occurrence matrices [7] are 

used to derive texture features:  
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i j
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Entropy(T2) = P i, j( ).logP i, j( )

ji

 

Contrast(T3) = | i j |P 2 i, j( )
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Homogeneity(T4 ) =

P i, j( )
| i j |ji

 . 

As a result of this step, each derived segment of training image 

Ij is a tuple with 7 values (C1,C2, C3, T1, T2, T3, T4) 

 

3.2. Data Preprocessing 

For effective AR discovery among the discovered features in 

the next step, the data needs to be preprocessed. Since the 

features of the segments are continuous, variable data types, 

quantitative ARs, rather than Boolean ARs are discovered [5].  

Fig. 2. Algorithm for data preprocessing and discretization. 

Value range is partitioned into eight equi-width intervals for 

each feature type. Each interval is mapped to a corresponding 

mean value to simplify AR discovery and exploit redundancy 

for classification purposes. The algorithm we use for this step is 

presented in Figure 2.  

 

3.3. Association Rule Discovery 

Association rule discovery is performed as follows [5]. Let I 

denote the set of all images in a particular class. The features 

can then take a set of k discrete values },.......,,{ 21 k
vvv . We 

denote the value of feature Fj for image Ij by the symbol Ij[Fj]. 

For each image (Ij) and feature (Fj) and for each set X of 
images, X  I, },....,2,1{ kp  define the sets of Ij |Fi Ij and X:  

 Begin 

 // Read an image from a set of training images 

 // Remove those tuples from feature matrix where feature values   

 are NIL  

     Not_clean  find (feature, tuples with NIL values) 

     feature  delete Not_clean tuples 

 Arrange the image feature set in a matrix with each row   

 corresponding to a segment and the column corresponding to each   

 of the derived features for the segment. 

 // Discretize the continuous data by dividing the range into 10  

 intervals and substituting  

 // the values in one interval by the mean of the interval 

 FOR every feature (column) in feature matrix 

    // find maximum and minimum for the feature 

    max_f maximum(feature(f))  

    min_f   minimum(feature(f)) 

    // use the maximum and minimum to divide the range into 10   

    // intervals 

    range  max_f – min_f 

    interval_f  min_f with increment of (range/10) until max_f 

    // Replace each value in that feature with the mean of the   

    //interval it falls in e.g. (t+(t+1))/2 is substituted for any value 

    // falling in interval t to t+1 

    For each value in the feature 

         Value_f  mean(interval(t) to interval(t+1)) 

    EndFor 

 ENDFOR 

 //The result of the above step is a matrix of image features  
 // (Discretized_matrix)  
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We also define for some index set P and some set of features, 
{ }| PiF

i
, the present set of X given }|{ PiF

i
 as 

follows: =:)},|{|( pIiFXpresent i U U
Pi II

ij

j
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X  I, },....,2,1{ kp , we define p-support of X to be, 

)},|{|(#:),( pPiFXpresentpXs i= . For disjoint subsets X 

and Y of I, },....,2,1{ kp , we write )()( pYpX to indicate 

that =YX ø and ),( pXpresent ),( pYpresent . We refer to 

)()( pYpX as an Association Rule (AR). An AR has a 

support, ))()(( pYpXs , defined to be, 

))()(( pYpXs :={ )},|{|()},|{|(| pPiFYpresentpPiFXpresenti ii
}. 

Finally, we define the confidence of )()( pYpX  as 

follows: ))()(( pYpXc := ),(/))]()(([ pXspYpXs . The rules 

are filtered by a minimum measure of support and confidence, 

which provide a parametric control on the redundancy and 

significance of these rules. The association rules provide a 

unique abstraction of features in an image by drawing 

relationships (associations) between them. These relationship 

features are derived and then exploited for classification as 

described in the next section, and their efficacy is evaluated.  

 

3.4. Classification 

The classification is performed as follows. Sixty percent of the 

data is used for training. The rules common to all the images 

for the same patient are extracted and called Rcommon‘common 

rules.’ During our experiments, this figure lies somewhere 

between 0 and 728, depending on how similar the images are. 

Feature extraction for each of the test images is performed, and 

Rtest rules are extracted for each test image. This rule set is 

compared with each training image of every class, and the 

number of matching rules between Rcommon and Rtest per image 

compared to the test image. Let these rules be Rx for each 

image comparison. Among the Rx rules, we say Rx-common belong 

to Rcommon obtained above from the training set. Then,  

False dismissals ( FD%) = ( (Rcommon - Rx-common)/Rcommon)*100 

False alarm average = (Rx - Rx-common) 

False alarms (FA%) = ((Rx - Rx-common)/Rx )*100 

 

4. EXPERIMENTAL RESULTS 

 

We performed three different sets of experiments to find the 

intra-class similarity of nine different patients (nine patient 

classes) suffering from either Non-proliferative Diabetic 

Retinopathy (NPDR) or Proliferative Diabetic Retinopathy 

(PDR). Figure 3 shows a representative example of such fundus 

images from one patient. For the experiment, ten images in 

each class were taken, and 60% were used for training. The 

remaining images were used for testing (querying). A total of 

24 (6 X 4) comparisons were made for each image set. After 

rule extraction, false alarm and false dismissal rates were 

calculated as explained in the previous section. The results are 

presented in Table 1 below. To evaluate the contributions of 

most discriminatory combinations of features and their efficacy 

in generating effective ARs for classification, we calculated the 

false alarms and dismissals for combined sets of 2 and 6 

features. 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 3. Representative images of DR for one patient. 

   We observed that a combination of [H, entropy] and [H, V, 

energy, entropy] coefficients led to the highest rate of false 

alarms and that [V, energy] achieved the lowest rate of false 

dismissals. Our observations are presented in Figure 4.  

Table 1. The classification results on a patient database. 

Patient 

set id 

Common 

rules 

FA 

(avg.) 

FD (%) FA (%) 

p01 42 455 0 30 

p02 309 409 0.48 24 

p03 4 420 0 33 

p04 15 351 3.6 30 

p05 15 465 0 36 

p06 40 505 15 32 

p07 728 114 0.14 9 

p08 27 457 0.92 29 

p09 671 101 0.4 8 

   Our approach can discover different levels of ARs. The 2-
level rule has two ascendants (e.g. C2,T1 T4 ), the 3-level rule 

has 3 ascendants (e.g. C1,T1,T4 T3), and so on. 

 (a)                                                   (b) 

Fig. 4. Frequent feature combinations and matching images for (a) 
2-feature, and (b) 6-feature combinations. 
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   We measured the affect of different AR levels on classifier 

performance. As demonstrated in Figure 5, false dismissals rise 

rapidly when rule levels increase and false alarms decrease. We 

expect that an increase in rule levels will increase the 

specificity of the rule in discriminating between classes.  

 

 
Fig. 5. Effect of levels of association rules on FD% and FA% 

Fig. 6. Number of rule matches discovered at different levels.  

 

Fig. 7. Proximity of classified images with correct class. 

 

Figure 6 shows the similarity (in terms of matching 

rules) we achieved by changing the level of rules. Figure 7 

shows the proximity of false results with the correct class; a 

false dismissal generates a corresponding false alarm in another 

class. The labels in Figures 6 and 7 show how close the correct 

class is in the case of false alarms and false dismissals. The 

scores are computed as follows. If an image rejected as false 

dismissal has x similarity with the correct class and y similarity 

with another class (with closest match to the query), then the 

proximity with the correct class is x/y. The upper data labels 

present in Figure 7 show the difference 1 – x/y. 

 

5. CONCLUSIONS 

 

Patient classification in medical imaging has a range of 

applications spanning both the biomedical and healthcare 

domains. The efficacies of such methods frequently rely on the 

discovery of effective and reliable feature extraction methods 

that can maximize the intra-class similarities. We have 

proposed a proof-of-principle schema for the discovery of ARs 

among features in images for autonomous classification of 

images to the patient of origin. Our extensive experimentation 

has shown that these ARs discover unique relationships among 

embedded features and possess discriminatory power. While 

the elucidation of scalability and portability of such isomorphic 

relationship discovery based frameworks is far from complete, 

we believe that this work will increase improved classification 

schemas for a variety of image domains and clinical data 

classification problems. Future work will include studying the 

variety of such image databases and developing scalable 

methods for feature discovery for superior classification. 
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